Code No.: 22667

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

M.E. (E.C.E.) II-Semester Main Examinations, August-2023

Embedded Real Time Operating Systems

(Embedded Systems & VLSI Design)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A anc' any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Differentiate between Hard and Soft Real time systems	2	2	1	1
2.	Define the following terms with respect to Real time Systems a) Precedence of Jobs b) Absolute Dead line	2	1	1	1
3.	Considering a Real time system having only one periodic task [Ti= (ei, pi, di)],	2	3	2	2
	T1= (50ms,80ms,80ms) and a Background task (Tb) with eb = 1000ms compute Ctb?				
4.	Justify the significance of IPC techniques in a real time operating system?	2	3	2	1
5.	Differentiate between the system calls Fork() and Vfork()?	2	2	3	3
6.	List the functions of Kernel in real time operating system?	2	1	3	3
7.	Define the terms Concurrency and Race condition?	2	1	4	1
8.	Justify the necessity of Parallel Processing in real time operating system?	2	3	4	2
9.	Define the terms a) Triple modular redundancy b) Primary back up fault tolerance	2	1	5	2
10.	Differentiate between Permanent, Temporary and Intermittent faults in RTOS?	2	3	5	3
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Explain the working model of a Real time Operating System with the help of a neat diagram?	5	2	1	1
b)	Differentiate between Preemptive and Non-Preemptive kernel? Explain suitably with an example?	3	4	1	1
12. a)	Define Inter process Communication? Explain the Function of Semaphore as an IPC technique?	5	2	2	2

Code No.: 22666

b)	Compute a suitable frame size for the following task set Ti= (ei, pi, di) Note: Assume all time constants in milliseconds T1 (1,4,4) T2(1,5,5) T3(1.5,20,20) Justify your answer for choosing the frame size?	3	3	2	3
13. a)	Explain the task state diagram with a suitable state model?	4	2	3	1
b)	Explain the architecture of Linux 2.X kernel with a neat diagram?	4	2	3	2
14. a)	Define System call? Write the function of any four System calls used in Linux 2.X kernel?	4	3	4	1
b)	List the functions of Device Drivers and explain the operation of character drivers?	4	1	4	1
15. a)	Explain the BIST as a debugging technique for Linux Kernel?	4	2	5	3
b)	1 CP-ring Linux Kernel for Automatic air traffic	4	3	5	3
16. a)	G. Chadylar in Real Time Operating System and	4	3	1	1
b	Massage Queue as an Inter Process	4	2	2	2
17.	Answer any two of the following:				
а	- 1. I management algorithms in Linux Operating	4	3	3	1
t	Write a short note on Interrupt Execution process in L nux Kernel?	4	1	4	1
	Explain the case study of Porting Linux Kernel for Image processing Application?		3	5	

M Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

• ` `	Blooms Taxonomy Level - 1	20%
1)	Blooms Taxonomy Level – 2	38%
11)	Blooms Taxonomy Level – 3 & 4	42%
iii)	Blooms Taxonomy Level 3 &	
